
O, lfll141, I:G|TII S a
ILLf TRAffS S

Scheduling Time-Critical Graphics on Multiple Processors *

H95- 25870
Tom Meyer and John E Hughes

NSF/ARPA Science and Technology Center for

Computer Graphics and Scientific Visualization,
Brown Site

{ twm,j]h } @cs.brown.edu

Abstract

This paper describes an algorithm for the scheduling of time-critical
rendering and computation tasks on single- and multiple-processor
architectures, with minimal pipelining. It was developed to man-
age scientific visualization scenes consisting of hundreds of objects,
each of which can be computed and displayed at thousands of pos-
sible resolution levels. The algorithm generates the time-critical

schedule using progressive-refinement techniques; it always returns
a feasible schedule and, when allowed to run to completion, pro-
duces a near-optimal schedule which takes advantage of almost the

entire multiple-processor system.

CR Categories:

Additional Keywords:

1 Introduction

Scientists who create complex datasets (e.g., large time-varying
fluid-dynamics simulations, high-resolution MRI scans, and struc-

tural simulations) require correspondingly sophisticated ways of

examining and visualizing this data. In such cases, a scientist may

want to interactively manipulate and examine very complex visu-
alizations, such as a rake with dozens or hundreds of streamlines.

Maintaining the fast interaction rates required can be quite difficult,
especially in immersive environments such as the Virtual Wind

Tunnel at NASA Ames [BL91], where update rates of at least ten

frames/second are required.

In order to support the task of exploratory visualization in these
complex datasets, we have developed a time-aware scheduling algo-

rithm to provide importance-based real-time computation and ren-
dering of some common scientific-visualization techniques. This

algorithm takes advantage of a dedicated graphics workstation with

a single-threaded graphics pipeline and from one to several dozen

processors, communicating using a shared-memory model. (Al-
though some research systems, such as UNC's PixelFlow, will use

multi-threaded graphics pipelines, no such system is commercially

available yet.)

The techniques described in this paper extend to general graph-
ics scheduling. Objects with nearly-continuous representations--

streamlines can be computed at arbitrary fimesteps, and for any

number of steps, for example--are particularly well-suited to be

scheduled using this algorithm.

This scheduling algorithm has the following advantages

*This work was supported in part by grants from NASA grant
NAG 2-830, NSF/ARPA, Sun Microsystems, Autodesk, Microsoft,
and TACO.

• After an initial startup phase, it can terminate at any time
during its incremental refinement phase, and will always return
a feasible schedule.

• It results in near-maximal usage of single- and multiple-

processor machines if allowed to run to the completion of

the refinement phase.

• It pipelines all computations to be rendered as soon as possible,
reducing lag times.

• It balances the benefit of spending time computing new data
against the lime required to redisplay existing data at its

already-computed resolution.

Figure 1: The target application, scientific visualization of complex

computational fluid dynamics scenes in an immersive environment.

2 Previous Work

An large body of research on real-time scheduling exists, dat-

ing from the 1950's. A good introduction to the relevant issues

is [SSNB94].

Classical real-time theories mainly deal with static scheduling

problems in which the algorithm has complete knowledge of the

demands placed on it, and where there are generally hard constraints

which,if violated,couldresultin catastrophicfailure(airplanes
crashing,factoriesblowingup,etc).Thesetypesofproblemsaxe
fairly well-understood, and many algorithms exist for solving them.

Although dynamic multiple-processor scheduling is becoming an
active area, little work has been done on it. Almost all the interesting

problems are NP-complete, and good approximation algorithms are
only beginning to emerge.

Unfortunately, problems of particular interest to scientific visual-

ization have not been much studied. The narrowness of the problem

- scheduling multiple independent tasks-pairs (computation and

rendering) with the two requirements that the "rendering" portions
all take place on one machine, and that each rendering portion start

only after the completion of its computation portion - makes it too

specialized to warrant much attention, except from those who need
solutions.

Because virtual environments require near-constant, high frame

rates, several systems which address time-critical issues have been
developed:

Richard HoUoway's Viper system [Ho192] uses objects with pro-

defined levels of resolution, and renders objects at a global level of

resolution sufficient to display all of them in allotted time. It does

not provide for individual levels of importance for the objects.

Funkhouser and Sequin describe a real-time scheduling algorithm
for complex virtual walkthroughs in [FS93]. However, their algo-

rithm only provides support for objects with a few pre-computed

levels of representation and their faster algorithm only works well

on objects with a convex-downward benefit function. Nonetheless,

the ideas in that paper provide the starting point for our algorithm.

The multi-processing scheduling algorithm described by Rohlf
and Helman in [RH94] schedules computation, culling and ren-

dering of geometric data by using pipelining, which results in the

addition of one frame's worth of lag to the system 0ag is as bad

as low frame rates in virtual environments). Additionally, they use

a feedback-based model for managing scene complexity, so cannot
bound frame times when the scene changes rapidly.

Little work has been done on combining computation and ren-

dering, and on managing tradeoffs among computing expensive but
useful information.

3 Benefit Function

For a set of rendering tasks, we need to determine the most useful

amount of time to spend computing and rendering each one. We

define a function Benefit(t), which reflects the approximate value of
spending an amount of time t computing and rendering a graphics
task. We want to maximize

B = ZBenefit,(timei)

i

subject to

Z time, < frametime
i

This function consists of a product of several other benefit values,

computed on a per-item basis. For any item i, we decompose the

benefit of alloting time t to rendering that item into a product of

three parts:

Benefit,(t) = Importance, • Processor,(t) . Hysteresiso(t)

Importance is an importance value for the item, expressing the

object's inherent value, closeness to the viewer, user interaction, and
the visual focus of the viewer. Any number of perceptually-based

metrics could be weighted into this; in the current implementation

we assign high importance to streamlines with which the user is

interacting. Defining useful metrics for determining an object's

importance, both in perceptual and semantic terms, is beyond the

scope of this paper.

Processor expresses the amount of value to be gained by spend-
ing that amount of startup, computation, and rendering time. We

assume that this is a n0ndecreasing function, convex to the right of

the "startup time;' reflecting the idea that for most visualizations,

"something is better than nothing, but fine detail is worth
little more than coarse detail" Our implementation uses _/t - ts
for t > t,, where t8 is the startup lime, and 0 for t < t,.

Hysteresis term is a sigrnoid function designed to encourage

inter-frame continuity. It varies smoothly from a value of 1 at some

point t < tprev up to a value of 1 + 6 at tprev, where tprev is the
time allocated to the task in the previous frame.

[Startup /_ /-

,// Hysteresis Range

Time

Figure 2: The benefit function has a fixed startup cost, rises

quickly after that, and gradually falls off until the hysteresis point.
The two dashed lines indicated the local maxima of the function

Benefit(t)/t.

Since we want to maximize the sum of the benefits subject to
the constraint that the sum of the times scheduled for all tasks is

less than the frame time, we first examine the benefit per time unit

for the tasks. If this benefit per time B't-_, which Funkhauser and

Sequin called the value, is increasing at some value t, we would
ideally like to allocate more time to task i: doing so would reduce

the average cost of the benefits derived from executing task i. But

if the benefit per time is decreasing, then allocating more time to

task i will increase the average cost of the benefit, and should be

done only if other tasks cannot benefit more from being given the
additional time instead. We therefore consider the points where the

value _ is at a maximum as good starting points in the search for

ideal time allocations. A complete rationale for this starting choice
is given in [FS93]. As seen in Figure 2, the benefit/time function

will have at most two local maxima - near the extreme points of

Processori(t)/t and (Hysteresisi(t) - 1)/t. If these functions axe
expressed analytically, it is simple to compute these two points

analytically. Note that as long as both functions are differentiable

and have few local maxima, we can perform a similar analysis to

obtain the starting points.
The functions that constitute Benefit(t) are all defined only at a

fixed, sparse set of values for t, since computation time cannot be

allocated in quanta smaller than the clock cycle. Furthermore, the

functions axe likely to be step functions, constant on large intervals
in the domain. To the extent that this is true, time spent in making

small adjustments to the allocation of processor time is often wasted.

On the other hand, by bounding the smallest step size we will take in

adjusting processor allocations be of the same scale as the smallest
interval on which the true benefit functions are constant, we can

substantially avoid such waste, while still derviving the benefit of

being able to use differentiable functions.

4 Scheduling Algorithm

The application into which the scheduler fits works as follows: In
a typical frame-time, user input is gathered, the schedule computed

during the last frame is executed, and the schedule of tasks to be
performed during the next frame is computed, with the compo-

nents of each benefit function modified according to the previous

schedule (which influences the hysteresis factor) and the user inter-

action, which influences importance. This sections describes how
the scheduler works.

4.1 Single-Processor Case

We use a two-phase incremental-refinement scheduling algorithm,

based partly on Funkhouser and Sequin's algorithm [FS93].

Greedy Phase. The first phase is essential; it generates a feasible

but not necessarily good schedule, and requires O(n log n) time.

This makes it possible to bound the worst-case time of the scheduler

and consider that amount of time as part of the frame time. (The

scheduler can place itself into the generated schedule for the next

frame). Of course, it is possible to have an extremely complex scene
for which it would be impossible to execute even this phase during

the frame time. In this case the schedule could be recomputed only

once every few frames, at some loss of responsiveness.

The greedy initial phase generates, for each task i that has been

selected for inclusion in the schedule, a pair (t,3, Benefit(t,j))
at each of the local maxima of the Benefit(t)/_ function. We

sort these pairs by value Benefit(Q/t, and repeatedly take from

the list the task whose value is greatest. If the task has not yet
been scheduled and there is still available space, we add it to the

work list; ff it has been scheduled and the new value of t is greater

than the previously scheduled one, we reschedule it at the new time

(if there is space). This produces an initial packing which is at

least half as good as the result from doing the NP-complete optimal

packing[FS93].

Incremental Phase. During the second phase of the algorithm

the scheduler iteratively refines its generated schedule, as time al-
lows. However it can terminate at any time, since the feasibility

of the schedule is never violated. This phase also has O(n log n)

complexity, and may terminate before the time alloted.

The problem reduces to an N-dimensional gradient descent,
where we try to find the maximum value of the derivative such

that all of the benefit functions have the same slope (some may have

a zero slope).

To solve this, we use a version of the Newton-Raphson technique

to initialize each of the tasks with a stepvalue/_,:

6, = granularity, min(1, _ Benefit',(ti)))
Benefitl'(t,)

where granularity is the starting value for the refinement, and
is the current mean of the derivative values. If 8, is smaller than

the current smallest task size, we initialize it to the smallest task

size. This technique moves slowly through areas where the benefit

function has high curvature and quickly otherwise, by taking a step

that's inversely proportional to the curvature, but proportional to
the difference between the current derivative value and the desired

derivative value.

While we can feasibly add a task i, we do so, generating a benefit

of Benefit',(ti). We add 8i to t,, and then repeat. If we cannot

feasibly add any task, we find the currently-scheduled task i with

the smallest Benefit',(t,), we subtract _, from the time allotted to

it. We then repeat the entire process. Every time a task has time
added to it and then subtracted away, we halve the value of _,, until

_, is smaller than the smallest task size, at which point the task i

is removed from the list of candidates for improving the schedule.

The algorithm terminates when the list is empty, or the available
time is used up.

To determine if we should spend additional time refining the
schedule before executing it, we compare the margin of change in

the total benefit ptr iti/ration with the amount of time required to

perform that iteratlofi. If the scheduler should run for less time, we

decrease its alloted time slightly, bounded by the worst-case time.
Otherwise, we can increase its alloted time.

4.2 Multiple-Processor Case

Dedicated graphics multiple-processor workstations are becoming
common, especially for high-end scientific-visualization applica-

tions. These machines allow light-weight processes which com-

municate using low-overhead shared memory and synchronization
primitives; however, the rendering pipeline is fed from only one

processor at a time.

Most multiple-processor scheduling algorithms are NP-complete

(even the fairly simple case of 2 processors, no precedence con-

straints, and arbitrary computation times is NP-complete) [G J75].
Since we want to schedule a set of tasks on several processors with

precedence constraints, our problem is at least this hard.

We modify the single-processor greedy algorithm to quickly gen-
erate a feasible schedule for multiple processors in O(n _) time for a

guaranteed schedule or O(n log n) time for an optimistic, probably-
feasible one.

First, let us consider how we might build a good multiple-

processor schedule. Generally we have two portions of the vi-

sualization task: a compute task taking time c and a render task
taking time r (possibly with a cull task inserted between them).

The compute task can run on any processor, but all render tasks

must stay together. Also, any data must be computed before it can

be rendered, so any good schedule would have to make sure that

rendering tasks would not sit idle while waiting for data. Let us
consider two tasks which are being computed on a single processor
and rendered on another. If we order them so that the tasks with

large values of c - r (which we call the excess compute time) are

last, we have the most room possible for additions, and minimize the

startup differences and ending differences between the processors,
as shown in Figure 3.

Compute A

B J Render ACompute

Render B

Compute B

Compute A Render B

Render A

Figure 3: Ordering tasks by increasing excess compute time mini-

mizes the makespan.

The multiple-processor algorithm works like the single-processor
algorithm, except that we modify the insertion routine to verify that

adding work to the schedule doesn't produce an infeasible schedule.

We initially try to add each task to the rendering processor; if there

is not enough room on a processor, we push tasks onto the next

processor, starting with the task with the most excess compute on
the current processor. In this way, we always minimize the total

amount of computation time required before rendering can begin.

Pushing a single task may cause a cascade of pushes, as shown in

Figure 4, but we do not attempt to push a task again if a previous

pushonthattaskhasfailed(thereisprobablystillnotenoughroom
forit,sincepushesonlygoinonedirection),soweperformatmost
O(p. n) pushes (p is the number of processes), with each attempted

push requiring an additional verification pass.

F

/

Comp
D

m

Comp

C

Comp

D

Comp

B

i

Comp

C

Comp

A

m

Rend A

Rend C

Rend D

Comp

A

m

Rend A

Rend C

Rend D

Figure 4: Pushing a task may cause a cascade of pushes. Here,

inserting task B causes task D to move to another processor.

In order to guarantee feasibility, we need to look at the two

possible ways in which an insertion could violate it:

• We must make sure that the sum of the work is less than

the frametime, for each processor. Verifying schedule-size

feasibility takes O(1) time if done as each task is added to the
list.

• Additionally, indivisible tasks cannot be rendered in time less

than the sum of the startup, compute, and rendering times for
that task. Consider a fine-grained compute task that gener-

ates small pieces of geometry (meshes, lines, or even individ-
ual polygons and line segments) at regular intervals c during
computation, after the startup time s. Rendering of any of
that task's data cannot begin until time s + c. If the t_ae

required to render a piece is r, the total time required to render
primitives is s + c + (x - 1) - max (c, r) + r. Any generated

schedule which violates this requirement is infeasible.

Verifying precedence relations takes O(n) time, since it is
necessary to check every rendering task which is scheduled
before an inserted rendering task, as well as every computa-

tional task which is scheduled after an inserted computational
task.

As described previously, when scheduling several tasks, we can

lower the possibility of feasibility conflicts by ordering them from

low to high excess computation. Where this value is equal, we

define a consistent ordering of tasks so that the partial order of

tasks is identical across both the compute and rendering phases.

In actual practice this heuristic, when applied to scenes containing
diverse types of objects, results in schedules which rarely violate

the precedence relations and which achieve high processorusage. If

one can tolerate the occasional slow frame, removing the precedence

checking results in an O(n log n) algorithm.

Of course, in pathological cases, any render-dominated schedule

may have only the same benefit as the single-processor schedule,

but in most complex and diverse scenes, the scheduling algorithm is

able to take advantage of the different computational and rendering

demands of these tasks to generate a feasible, good schedule which
uses almost the entire multi-processor system.

5 Implementation Results

Our actual implementation results are fairly preliminary at this stage,
but we have already found some interesting results.

We used a two-processor Onyx to run our real-time usability

tests. However, we were unable to isolate the processors from

the vagaries of UNIX scheduling (we could only have isolated one

processor from the operating system, since system tasks have to run

on at least on processor), so obtained frame rates that varied between

8 and 12 flames per second when we attempted to schedule at 10

flames per second.

If we simulate a four-processor Onyx, allocating 100 millisec-

onds (one complete processor at 10 frames/second) for the schedul-

ing phase, we fill 97% of the other three processors, when the taskis
compute-bound. With 50 milliseconds allocated for the scheduling

task, the algorithm still manages to fill 92% of the available pro-

cessor time. The benefit of the algorithm declines sharply after this

point, however. Giving the scheduler 25 milliseconds resulted in

only 65% processor usage, while 15 milliseconds dropped to 32%

usage, resulting in less computational time than a single processor.

We intend to perform additional investigations to understand how

the scheduling algorithm's behavior degrades under stress, and mod-
ify the search techniques which it uses to cope better with situations
involving too much work or too little time to schedule.

6 Future Work

We have not yet completed the interleaved version of this algo-
rithm, in which it schedules iself as a time-critical task onto the

work queue, scheduling the next frame while the current frame is

being completed. Several interesting problems occur here, involv-

ing feedback problems and how to deal with unexpected user input

(the scheduler can't tell when a user will manipulate a large, com-

plex visualization tool, so will necessarily lag slightly behind in that
case).

It is also be extremely important to understand more about human
perception in complex environments, to generate more realistic ben-
efit functions. Additionally, we would like to work with scientists to
determine the actual semantic benefit of each tool when performing

varying types of tasks.

References

[BL91]

[FS931

Steve Bryson and Creon Levitt. The VLrtual W'mdtun-
nel: An Environment for the Exploration of Three-

Dimensional Unsteady Flows. In l_sualization '91,

pages 17-24, 1991.

Thomas A. Funkhouser and Carlo H. Stquln. Adaptive

Display Algorithm for Interactive Frame Rates Dur-
ing Visualization of Complex Virtual Environments.

[GJ75]

[Ho192]

[RH94]

[SSNB94]

In James T. Kajiya, editor, Computer Graphics (SIG-

GRAPH '93 Proceedings), volume 27, pages 247-254,

August 1993.

R. Garey and D. Johnson. Complexity Results for Mul-

tiprocessor Scheduling Under Resource Constraints.

SIAM 7ournal of Computing, 1975.

Richard L. Holloway. Viper: A Quasi-Real-Time

V'trtual-Environment Application. Technical Report

TR92-004, University of North Carolina, Chapel Hill,
1992.

John Rohlf and James Helman. IRIS Performer: A

High Performance Multiprocessing Toolkit for Real-
Time 3D Graphics. In Andrew Glassner, editor, Pro-

ceedings of SIGGRAPH '94 (Orlando, Florida, July

24-29, 1994), Computer Graphics Proceedings, Annual

Conference Series, pages 381-395. ACM SIGGRAPH,

ACM Press, July 1994. ISBN 0-89791-667-0.

John A. Stankovic, Marco Spuri, Marco Di Na-

tale, and Giorgio Buttazzo. Implications of Classical

Scheduling Results for Real-Time Systems. to appear
in IEEE Computing, 1994. ftp.cs.uraass.edu,

/pub/ccs /spring /impl_s ch_r ts .ps.

